Scattering Matrix and Functions of Self-adjoint Operators

نویسنده

  • ALEXANDER PUSHNITSKI
چکیده

In the scattering theory framework, we consider a pair of operators H0, H. For a continuous function φ vanishing at infinity, we set φδ(·) = φ(·/δ) and study the spectrum of the difference φδ(H − λ)− φδ(H0 − λ) for δ → 0. We prove that if λ is in the absolutely continuous spectrum of H0 and H, then the spectrum of this difference converges to a set that can be explicitly described in terms of (i) the eigenvalues of the scattering matrix S(λ) for the pair H0, H and (ii) the singular values of the Hankel operator Hφ with the symbol φ.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion

On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.

متن کامل

Spectral Theory of Discontinuous Functions of Self-adjoint Operators: Essential Spectrum

Let H0 and H be self-adjoint operators in a Hilbert space. In the scattering theory framework, we describe the essential spectrum of the difference φ(H)−φ(H0) for piecewise continuous functions φ. This description involves the scattering matrix for the pair H, H0.

متن کامل

m at h . SP ] 2 8 N ov 2 00 8 ABSOLUTELY CONTINUOUS AND SINGULAR SPECTRAL SHIFT FUNCTIONS

Given a self-adjoint operator H0, a self-adjoint trace class operator V and a fixed Hilbert-Schmidt operator F with trivial kernel and co-kernel, using limiting absorption principle an explicit set of full Lebesgue measure Λ(H0, F) ⊂ R is defined, such that for all points of this set the wave and the scattering matrices can be defined unambiguously. Many well-known properties of the wave and sc...

متن کامل

A note on $lambda$-Aluthge transforms of operators

Let $A=U|A|$ be the polar decomposition of an operator $A$ on a Hilbert space $mathscr{H}$ and $lambdain(0,1)$. The $lambda$-Aluthge transform of $A$ is defined by $tilde{A}_lambda:=|A|^lambda U|A|^{1-lambda}$. In this paper we show that emph{i}) when $mathscr{N}(|A|)=0$, $A$ is self-adjoint if and only if so is $tilde{A}_lambda$ for some $lambdaneq{1over2}$. Also $A$ is self adjoint if and onl...

متن کامل

On Periodic Matrix-Valued Weyl-Titchmarsh Functions

We consider a certain class of Herglotz-Nevanlinna matrix-valued functions which can be realized as the Weyl-Titchmarsh matrix-valued function of some symmetric operator and its self-adjoint extension. New properties of Weyl -Titchmarsh matrixvalued functions as well as a new version of the functional model in such realizations are presented. In the case of periodic Herglotz-Nevanlinna matrix-v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011